

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 ![Ubuntu](https://github.com/noaa-emc/hpc-stack/workflows/Build%20Ubuntu/badge.svg)
![macOS](https://github.com/noaa-emc/hpc-stack/workflows/Build%20macOS/badge.svg)

hpc-stack

This repository provides a unified, shell script based build system
for building software stack needed for the NOAA [Universal Forecast
System (UFS)](https://github.com/ufs-community/ufs-weather-model) and
related products, and applications written for the [Joint Effort for
Data assimilation Integration
(JEDI)](https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/)
framework.

This is part of the [NCEPLIBS](https://github.com/NOAA-EMC/NCEPLIBS)
project.

Authors

Rahul Mahajan, Kyle Gerheiser, Dusan Jovic, Hang-Lei, Dom Heinzeller

Code Manager: Kyle Gerheiser

Installers:

Machine | Programmer
————|——————
Hera | Kyle Gerheiser
Jet | Kyle Gerheiser
Orion | Hang-Lei
WCOSS-Dell | Hang-Lei
WCOSS-Cray | Hang-Lei
Cheyenne | Dom Heinzeller
Gaea | Dom Heinzeller

Contributors

Mark Potts, Steve Lawrence, Ed Hartnett, Guoqing Ge, Raffaele Montuoro, David Huber

Prerequisites:

The prerequisites of building hpc-stack are:

	[Lmod](https://lmod.readthedocs.io/en/latest/) - An Environment Module System

	CMake and make

	wget and curl

	git

Building the software stack is a Three-Step process, as described
in the following sections.

Step 1: Configure Build

The first step is to choose the COMPILER, MPI, and PYTHON and
specify any other aspects of the build that you would like. This is normally
done by editing the file config/config_custom.sh. Here we describe
some of the parameter settings available.

	
	HPC_COMPILER: This defines the vendor and version of the
	compiler you wish to use for this build. The format is the same
as what you would typically use in a module load command. For
example, HPC_COMPILER=intel/2020.

	
	HPC_MPI: is the MPI library you wish to use for this build. The
	format is the same as for HPC_COMPILER, for example:
HPC_MPI=impi/2020.

	
	HPC_PYTHON: is the Python Interpretor you wish to use for this build. The
	format is the same as for HPC_COMPILER, for example:
HPC_PYTHON=python/3.7.5.

	
	USE_SUDO: If PREFIX is set to a value that requires root
	permission to write to, such as /opt/modules, then this flag
should be enabled. For example, USE_SUDO=Y

	
	DOWNLOAD_ONLY: The stack allows the option to download the
	source code for all the software without performing the
installation. This is especially useful for installing the stack
on machines that do not allow internet connectivity to websites
hosting the softwares e.g. GitHub.

	
	**NOTE: To enable a boolean flag use a single-digit Y or T. To
	disable, use N or F (case insensitive)**_

	
	PKGDIR: is the directory where tarred or zipped software files
	will be downloaded and compiled. Unlike PREFIX, this is a
relative path, based on the root path of the repository.
Individual software packages can be downloaded manually to this
directory and untarred, but this is not required. Build scripts
will look for directory pkg/pkgName-pkgVersion
e.g. pkg/hdf5-1_10_3.

	
	LOGDIR: is the directory where log files from the build will be
	written, relative to the root path of the repository.

	
	OVERWRITE: If set, this flag will cause the build script to
	remove the current installation, if any exists, and replace it
with the new version of each software package in question. If
this is not set, the build will bypass software packages that are
already installed.

	NTHREADS: The number of threads to use for parallel builds

	MAKE_CHECK: Run make check after build

	MAKE_VERBOSE: Print out extra information to the log files during the build

	VENVTYPE: Set the type of python environment to build. Value depends on whether using pip or conda. Set VENVTYPE=pyvenv when using pip and VENVTYPE=condaenv when using Miniconda for creating virtual environments. Default is pyvenv

The next step is to choose what components of the stack you wish to
build. This is done by editing the file stack/stack_custom.yaml
which defines the software packages to be built along with their
version, options and compiler flags along with other package specific
options.

The following software can optionally be built with the scripts under
libs. These packages are built in Step 3 using the build_stack.sh
script.

	Compilers and MPI libraries
- [GNU/GCC](https://gcc.gnu.org/)
- [Intel](https://intel.com)
- [OpenMPI](https://www.open-mpi.org/)
- [MPICH](https://www.mpich.org/)
- hpc- Meta-modules for all the above as well as Intel and IMPI

	HPC Stack - Third Party Libraries
- [CMake](https://cmake.org/)
- [Udunits](https://www.unidata.ucar.edu/software/udunits/)
- [PNG](http://www.libpng.org/pub/png/)
- [JPEG](https://jpeg.org/)
- [Jasper](https://github.com/jasper-software/jasper)
- [SZip](https://support.hdfgroup.org/doc_resource/SZIP/)
- [Zlib](http://www.zlib.net/)
- [HDF5](https://www.hdfgroup.org/solutions/hdf5/)
- [PNetCDF](https://parallel-netcdf.github.io/)
- [NetCDF](https://www.unidata.ucar.edu/software/netcdf/)
- [ParallelIO](https://github.com/NCAR/ParallelIO)
- [nccmp](https://gitlab.com/remikz/nccmp)
- [nco](http://nco.sourceforge.net/)
- [CDO](https://code.mpimet.mpg.de/projects/cdo)
- [FFTW](http://www.fftw.org/)
- [GPTL](https://jmrosinski.github.io/GPTL/)
- [Tau2]()
- [Boost](https://beta.boost.org/)
- [Eigen](http://eigen.tuxfamily.org/)
- [GSL-Lite](http://github.com/gsl-lite/gsl-lite)
- [JSON for C++](https://github.com/nlohmann/json/)
- [JSON Schema Validator for C++](https://github.com/pboettch/json-schema-validator)
- [pybind11](https://github.com/pybind/pybind11)
- [MADIS](https://madis-data.ncep.noaa.gov)
- [SQLite](https://www.sqlite.org)
- [PROJ](https://proj.org)
- [GEOS](https://www.osgeo.org/projects/geos)

	UFS Dependencies
- [ESMF](https://www.earthsystemcog.org/projects/esmf/)
- [FMS](https://github.com/noaa-gfdl/fms.git)

	NCEP Libraries
- [NCEPLIBS-bacio](https://github.com/noaa-emc/nceplibs-bacio.git)
- [NCEPLIBS-sigio](https://github.com/noaa-emc/nceplibs-sigio.git)
- [NCEPLIBS-sfcio](https://github.com/noaa-emc/nceplibs-sfcio.git)
- [NCEPLIBS-gfsio](https://github.com/noaa-emc/nceplibs-gfsio.git)
- [NCEPLIBS-w3nco](https://github.com/noaa-emc/nceplibs-w3nco.git)
- [NCEPLIBS-sp](https://github.com/noaa-emc/nceplibs-sp.git)
- [NCEPLIBS-ip](https://github.com/noaa-emc/nceplibs-ip.git)
- [NCEPLIBS-ip2](https://github.com/noaa-emc/nceplibs-ip2.git)
- [NCEPLIBS-g2](https://github.com/noaa-emc/nceplibs-g2.git)
- [NCEPLIBS-g2c](https://github.com/noaa-emc/nceplibs-g2c.git)
- [NCEPLIBS-g2tmpl](https://github.com/noaa-emc/nceplibs-g2tmpl.git)
- [NCEPLIBS-nemsio](https://github.com/noaa-emc/nceplibs-nemsio.git)
- [NCEPLIBS-nemsiogfs](https://github.com/noaa-emc/nceplibs-nemsiogfs.git)
- [NCEPLIBS-w3emc](https://github.com/noaa-emc/nceplibs-w3emc.git)
- [NCEPLIBS-landsfcutil](https://github.com/noaa-emc/nceplibs-landsfcutil.git)
- [NCEPLIBS-bufr](https://github.com/noaa-emc/nceplibs-bufr.git)
- [NCEPLIBS-wgrib2](https://github.com/noaa-emc/nceplibs-wgrib2.git)
- [NCEPLIBS-prod_util](https://github.com/noaa-emc/nceplibs-prod_util.git)
- [NCEPLIBS-grib_util](https://github.com/noaa-emc/nceplibs-grib_util.git)
- [NCEPLIBS-ncio](https://github.com/noaa-emc/nceplibs-ncio.git)
- [NCEPLIBS-wrf_io](https://github.com/noaa-emc/nceplibs-wrf_io.git)
- [EMC_crtm](https://github.com/noaa-emc/EMC_crtm.git)
- [EMC_post](https://github.com/noaa-emc/EMC_post.git)

	JEDI Dependencies
- [ecbuild](https://github.com/ecmwf/ecbuild.git)
- [eckit](https://github.com/ecmwf/eckit.git)
- [fckit](https://github.com/ecmwf/fckit.git)
- [atlas](https://github.com/ecmwf/atlas.git)

	Python and Virtual Environments
- [Miniconda3](https://docs.conda.io/en/latest/)
- [r2d2](https://github.com/jcsda-internal/r2d2.git)

	**IMPORTANT: Steps 1, 2, and 3 need to be repeated for each
	compiler/MPI combination that you wish to install.** The new
packages will be installed alongside any previously-existing
packages that may already have been built from other compiler/MPI
combinations.

Step 2: Set Up Compiler, MPI, Python, and Module System

This step is only required if using LMod modules for managing the
software stack. If LMod is not desired or used, the user can skip
ahead to Step 3.

Run from the top directory:
`
./setup_modules.sh -p <prefix> -c <configuration>
`
where:

	<prefix> is the directory where the software packages will be
installed with a default value $HOME/opt. The software
installation trees (the top level of each being is the compiler,
e.g. intel-2020) will branch directly off of <prefix> while the
module files will be located in the <prefix>/modulefiles
subdirectory.

	<configuration> points to the configuration script that you wish
to use, as described in Step 1. For example, to use the
config/config_custom.sh you would enter this:

`
./setup_modules.sh -c config/config_custom.sh
`

If no arguments are specified, the default is
config/config_custom.sh. Note that you can skip this step as well
for container builds because we currenly include only one compiler/mpi
combination in each container. So, each package is only build once
and there is no need for modules.

This script sets up the module directory tree in
<prefix>/modulefiles. It also sets up the compiler and mpi modules.
The compiler and mpi modules are handled separately from the rest of
the build because, when possible, we wish to exploit site-specific
installations that maximize performance.

	**For this reason, the compiler and mpi modules are preceded by a
	hpc- label**. For example, to load the Intel compiler module and
the Intel MPI (IMPI) software library, you would enter this:

`
module load hpc-intel/2020
module load hpc-impi/2020
`

These hpc- modules are really meta-modules that will both load the
compiler/mpi library and modify the MODULEPATH so the user has
access to the software packages that will be built in Step 4. On HPC
systems, these meta-modules will load the native modules provided by
the system administrators. For example, module load hpc-impi/2020
will first load the native impi/2020 module and then modify the
MODULEPATH accordingly to allow users to access the custom libraries
built by this repository.

So, in short, you should never load the compiler or MPI modules
directly. Instead, you should always load the hpc- meta-modules as
demonstrated above - they will provide everything you need to load and
then use these software libraries.

If the compiler and/or MPI is natively available on the system and the
user wishes to make use of it e.g. /usr/bin/gcc, the
setup_modules.sh script prompts the user to answer questions
regarding their use. For e.g. in containers, one would like to use
the system provided GNU compilers, but build a MPI implementation.

Step 3: Build Software Stack

Now all that remains is to build the stack:

`
./build_stack.sh -p <prefix> -c <configuration> -y <yaml> -m
`

Here the -m option is only required if LMod is used for managing the
software stack. It should be omitted otherwise. <prefix> and
<configuration> are the same as in Step 2, namely a reference to the
installation prefix and a corresponding configuration file in the
config directory. As in Step 2, if this argument is omitted, the
default is to use $HOME/opt and config/config_custom.sh
respectively. <yaml> represents a user configurable yaml file
containing a list of packages that need to be built in the stack along
with their versions and package options. The default value of <yaml>
is stack/stack_custom.yaml.

Additional Notes:

Setting compiler flags and other options

Often it is necessary to specify compiler flags (e.g. gfortran-10
-fallow-argument-mismatch) to the packages via FFLAGS. There are 2
ways this can be achieved.

1. For all packages: One can define variable
e.g. STACK_FFLAGS=-fallow-argument-mismatch in the config file
config_custom.sh. This will append STACK_FFLAGS to FFLAGS in
every build script under libs.

2. Package specific flags: To compile only the specific package under
libs with the above compiler flag, one can define variable
FFLAGS=-fallow-argument-mismatch in the <package> section of the
YAML file stack_custom.yaml. This will append
STACK_<package>_FFLAGS to FFLAGS in the build script for that
<package> only.

Adding a New library/package

If you want to add a new library to the stack you need to follow these
steps:

1. write a new build script in libs, using exising scripts as a
template

2. define a new section in the yaml file for that library/package in
config directory

	if the package is a python virtual environment, add a requirements.txt or environment.yml file containing the listing the python packages required to install the package. These files should be named and placed in pyvenv/package_name.txt and pyvenv/package_name.yml. VENVTYPE=pyvenv will use the pyvenv/package_name.txt and VENVTYPE=condaenv will use pyvenv/package_name.yml

	Add a call to the new build script in build_stack.sh

5. Create a new module template at the appropriate place in the
modulefiles directory, using exising files as a template

	Update README.md to include the name of the new library or package

Configuring for a new HPC

If you want to port this to a new HPC, you need to follow these steps:

1. Write a new config file config/config_<hpc>.sh, using existing
configs as a template. Also create a new yaml file
config/stack_<hpc>.yaml, using existing yaml files as a template.

	Add/remove basic modules for that HPC

	Choose the appropriate Compiler/MPI combination.

4. If a template modulefile does not exist for that Compiler/MPI
combinattion, create module templates at the appropriate place in the
modulefiles directory, using existing files as a
template. E.g. hpc-ips or hpc-smpi.

5. If the HPC provides some basic modules for e.g. Git, CMake,
etc. they can be loaded in config/config_<hpc>.sh

Using the DOWNLOAD_ONLY option

If an HPC (e.g. NOAA RDHPCS Hera) does not allow access to online
software via wget or git clone, you will have to download all the
packages using the DOWNLOAD_ONLY option in the config_custom.sh.
Execute build_stack.sh as you would on a machine that does allow
access to online software with DOWNLOAD_ONLY=YES and all the
packages will be downloaded in the pkg directory. Transfer the
contents of the pkg directory to the machine you wish to install the
hpc-stack and execute build_stack.sh. build_stack.sh will detect
the already downloaded packages and use them rather than fetching
them.

Using the HPC-stack

	If Lmod is used to manage the software stack, to use the HPC-stack,
you need to activate the stack. This is done by loading the hpc
module under $PREFIX/modulefiles/stack as follows:

`
module use $PREFIX/modulefiles/stack
module load hpc/1.0.0
`

This will put the hpc-<compilerName> module in your MODULEPATH,
which can be loaded as:

`
module load hpc-<compilerName>/<compilerVersion>
`

	If the HPC-stack is not managed via modules, you need to add
$PREFIX to the PATH as follows:

`
export PATH="$PREFIX/bin:$PATH"
export LD_LIBRARY_PATH="$PREFIX/lib:$LD_LIBRARY_PATH"
export CMAKE_PREFIX_PATH="$PREFIX"
`

Known workaround for certain installations of Lmod.

	On some machine’s (e.g. WCOSS_DELL_P3), LMod is built to disable
loading of default modulefiles and requires the user to load the
module with an explicit version of the module. e.g. module load
netcdf/4.7.4 instead of module load netcdf. The latter looks for
the default module which is either the latest version or a version
that is marked as default. To circumvent this, it is necessary to
place the following lines in modulefiles/stack/hpc/hpc.lua prior
to executing setup_modules.sh or in
$PREFIX/modulefiles/stack/hpc/1.0.0.lua after executing
setup_modules.sh.

`
-- https://lmod.readthedocs.io/en/latest/090_configuring_lmod.html
setenv("LMOD_EXACT_MATCH", "no")
setenv("LMOD_EXTENDED_DEFAULT", "yes")
`

Known Issues

	NetCDF-C++ does not build with LLVM Clang. It can be disabled by setting

disable_cxx: YES in the stack file under the NetCDF section.

	Json-schema-validator does not build with LLVM Clang. It can be disabled

in the stack file in the json-schema-validator-section.

Disclaimer

The United States Department of Commerce (DOC) GitHub project code is
provided on an “as is” basis and the user assumes responsibility for
its use. DOC has relinquished control of the information and no longer
has responsibility to protect the integrity, confidentiality, or
availability of the information. Any claims against the Department of
Commerce stemming from the use of its GitHub project will be governed
by all applicable Federal law. Any reference to specific commercial
products, processes, or services by service mark, trademark,
manufacturer, or otherwise, does not constitute or imply their
endorsement, recommendation or favoring by the Department of
Commerce. The Department of Commerce seal and logo, or the seal and
logo of a DOC bureau, shall not be used in any manner to imply
endorsement of any commercial product or activity by DOC or the United
States Government.

 —
name: Add Package Request
about: Request that a package be added to hpc-stack
title: ‘’
labels: ‘New Package’
assignees: ‘Hang-Lei-NOAA’

—

Please describe the package or library you would like to add to hpc-stack.
A description of package including GitHub repo.

What applications at NOAA will be using this package or library?
A list of groups or applications which will use this pacakge or library.

Is there already a package or library in hpc-stack that provides this, or related, functionality?
List any other related pacakges already in hpc-stack, as far as you know.

Additional context
Add any other context or screenshots about the package or library here.

Will This Package be Needed in an Operational Application?
If yes, the WCOSS System Software Checklist must also be completed.

WCOSS System Software Request Checklist

General questions:

Supervisor or sponsor of the requester

Software name and version, specific URL to the software

Software type - New or Upgrade existing?

Justification (List NPS models using the software)

Completion Time requested

Software License including all Dependency Software Licenses

Support contact(s) who must have a WCOSS account

Dependency Software list

Installation instructions

Test and verification instructions

Technical Review Checklist for open source software - Review the source code to answer the following questions

Licenses for the requested software and its dependencies

Licenses - confirm the software Licenses are acceptable

Maturity

Acceptable - Stable, production, or equivalent

Self-contained

No external http, https, ftp, or other URI exists except that in comments

No binary files in the package unless they are in the approved list

No publicly disclosed cybersecurity vulnerabilities and exposures

Searching https://cve.mitre.org/cve/

Security High Level Checklists

Is it prohibited by DHS/DOC/NOAA/NWS

Is it provided by a trusted source? Trusted sources include other NWS, NOAA, or DOC, agencies, or other Federal agencies that operate at a FISMA high or equivalent level. Additionally, trusted sources could be third-party agencies through which there is an existing SLA on file (such as RedHat).

Is software support offered (is it being updated and patched).

If maintained by a private entity, does the entity operate in a foreign country, especially a prohibited foreign country (China, Russia, Iran, North Korea, etc.).

Is there sufficient documentation to support maintenance

Are there known vulnerabilities or weaknesses

Is there a need for privileged processes

Are there software dependencies, are those dependencies approved or do they have any security concerns

Are there any other concerns related to SA, SI, and SC control families

 —
name: Bug report
about: Create a report to help us improve
title: ‘’
labels: bug
assignees: ‘’

—

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:

Expected behavior
A clear and concise description of what you expected to happen.

System:
What system(s) are you running the code on?

Additional context
Add any other context about the problem here.

 —
name: Feature request
about: Suggest an idea for this project
title: ‘’
labels: ‘’
assignees: ‘’

—

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Additional context
Add any other context or screenshots about the feature request here.

 —
name: Install request
about: Request an installation of package in the stack on HPC’s
title: ‘[INSTALL] <title>’
labels: ‘install’
assignees: ‘Hang-Lei-NOAA, kgerheiser, climbfuji’

—

Note: Please search to see if an issue already exists for the software you are requesting to be installed.

Which software in the stack would you like installed?
Please provide the name of the software you would like installed on the HPCs. Ensure the software exists in the list of supported software. If new software needs to be added to the stack, use the [add_package_request.md](./add_package_request.md) template.

What is the version/tag of the software?
Please provide the version/tag of the software to be installed.

What compilation options would you like set?
Give a detailed list of compilation options, compiler and MPI flavors and versions, etc.

Which machines would you like to have the software installed?
See currently managed HPC machines.

Any other relevant information that we should know to correctly install the software??
Please describe in as much detail as possible.

Additional context
Add any other context or screenshots about the install request here.

 ## Cron CI

Provides a script that can be run using CRON on HPC systems to build
and test hpc-stack.

Set the variables in setup_cron.sh and then have cron run that
script. It will then checkout hpc-stack and build and test hpc-stack
using the ufs-weather-model regression tests.

To save resources, a hash of the last build, prev_hash.txt is saved
in HPC_HOMEDIR each time and if it doesn’t change
between runs the script will exit.

Variables

Set these variables in setup-cron.sh

	HPC_HOMEDIR - Path to store logs and save temporary data

	HPC_INSTALL_PATH - Path to install hpc-stack to

	HPC_DOWNLOAD_PATH - Path to download and build from

	HPC_CONFIG - Custom config so compiler/MPI and other options can be set

	HPC_STACK_FILE - The yaml file that specifies which libraries and versions to build. Default to stack/stack_noaa.yaml

	LOG_PATH - The path to write logs to. Defaults to HPC_HOMEDIR/logs.

	HPC_MACHINE_ID - Name of machine (hera, orion, gaea, etc).

This is used to edit the correct modules in ufs-weather-model/machine.compiler

	TEST_UFS - Run ufs-weather-model regression tests. Defaults to true.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

