
HPC-Stack Users Guide

Jun 01, 2022

CONTENTS:

1 Introduction 1
1.1 Background . 1
1.2 Instructions . 1
1.3 Disclaimer . 1

2 Install and Build the HPC-Stack 3
2.1 Install and Build the HPC-Stack in a Singularity Container 3

2.1.1 Install Singularity . 4
2.1.2 Build and Run the Container . 4
2.1.3 Build the HPC-Stack . 4

2.2 Non-Container HPC-Stack Installation and Build (General/Linux) 5
2.2.1 Install Prerequisites . 5
2.2.2 Configure the Build . 6
2.2.3 Set Up Compiler, MPI, Python & Module System 7
2.2.4 Build the HPC-Stack . 8

3 Install and Build HPC-Stack on MacOS 9
3.1 Prerequisites for Building HPC-Stack . 9

3.1.1 Install Homebrew and Xcode Command-Line Tools (CLT) 9
3.1.2 Install Compilers . 10
3.1.3 Install CMake . 11
3.1.4 Install/Upgrade Make . 11
3.1.5 Install Openssl@3 . 11
3.1.6 Install Lmod . 11
3.1.7 Install libpng . 12
3.1.8 Install wget . 12
3.1.9 Install or Update Python3 . 12
3.1.10 Install Git . 13

3.2 Building HPC-Stack . 13
3.2.1 Clone HPC-Stack . 13
3.2.2 Lmod Environment . 13
3.2.3 Specify Compiler, Python, and MPI . 13
3.2.4 Set Appropriate Flags . 14
3.2.5 Set Environment Variables . 14
3.2.6 Specify MPI Libraries . 14

i

3.2.7 Libpng . 15
3.2.8 Set Up the Modules and Environment . 15
3.2.9 Building HPC-Stack . 15

4 Installation of the HPC-Stack Prerequisites 17

5 Build Parameters 19
5.1 Compiler & MPI . 19
5.2 Other Parameters . 20

6 HPC-Stack Components 23

7 HPC-Stack Additional Notes 27
7.1 Setting Compiler Flags and Other Options . 27
7.2 Adding a New Library or Package . 27
7.3 Configuring for a new HPC . 28
7.4 Using the DOWNLOAD_ONLY Option . 28
7.5 Using the HPC-Stack . 28
7.6 Known Workaround for Certain Installations of Lmod 29
7.7 Known Issues . 29

ii

CHAPTER

ONE

INTRODUCTION

Definition: The HPC-Stack is a repository that provides a unified, shell script-based build system to
build the software stack required for numerical weather prediction (NWP) tools such as the Unified
Forecast System (UFS) and the Joint Effort for Data assimilation Integration (JEDI) framework.

1.1 Background

The HPC-Stack provides libraries and dependencies in a consistent manner for NWP applications.
It is part of the NCEPLIBS project and is model/system agnostic. The HPC-Stack was originally
written to facilitate installation of third-party libraries in a systematic manner on macOS and Linux
systems (specifically RHEL). It was later transferred, expanded and further enhanced in the Joint
Effort for Data assimilation Integration (JEDI) project.

1.2 Instructions

Level 1 platforms (e.g., Cheyenne, Hera) already have the HPC-Stack installed. Users on those
platforms do not need to install the HPC-Stack before building applications or models that require
the HPC-Stack. Users working on systems that fall under Support Levels 2-4 will need to install the
HPC-Stack the first time they try to run applications or models that depend on it.

Users can either build the HPC-Stack on their local system or use the centrally maintained stacks on
each HPC platform. For a detailed description of installation options, see Installing the HPC-Stack.

1.3 Disclaimer

The United States Department of Commerce (DOC) GitHub project code is provided on an “as is”
basis and the user assumes responsibility for its use. DOC has relinquished control of the infor-
mation and no longer has responsibility to protect the integrity, confidentiality, or availability of
the information. Any claims against the Department of Commerce stemming from the use of its
GitHub project will be governed by all applicable Federal law. Any reference to specific commercial
products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not
constitute or imply their endorsement, recommendation or favoring by the Department of Com-
merce. The Department of Commerce seal and logo, or the seal and logo of a DOC bureau, shall

1

https://ufscommunity.org/
https://ufscommunity.org/
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/
https://github.com/NOAA-EMC/hpc-stack.git
https://github.com/NOAA-EMC/NCEPLIBS
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/
https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers
https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers

HPC-Stack Users Guide

not be used in any manner to imply endorsement of any commercial product or activity by DOC or
the United States Government.

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALL AND BUILD THE HPC-STACK

Attention: The HPC-Stack is already installed on Level 1 systems (e.g., Cheyenne, Hera,
Orion). Installation is not necessary.

HPC-Stack installation will vary from system to system because there are so many possible com-
binations of operating systems, compilers, MPI’s, and package versions. Installation via an EPIC-
provided container is recommended to reduce this variability. However, users may choose a non-
container approach to installation if they prefer.

Note: MPI stands for Message Passing Interface. An MPI is a standardized communication system
used in parallel programming. It establishes portable and efficient syntax for the exchange of
messages and data between multiple processors that are used by a single computer program. An
MPI is required for high-performance computing (HPC).

2.1 Install and Build the HPC-Stack in a Singularity Container

The Earth Prediction Innovation Center (EPIC) provides several containers available for the in-
stallation of the HPC-Stack either individually or combined with Unified Forecast System (UFS)
applications:

• docker://noaaepic/ubuntu20.04-gnu9.3

• docker://noaaepic/ubuntu20.04-hpc-stack

• docker://noaaepic/ubuntu20.04-epic-srwapp

• docker://noaaepic/ubuntu20.04-epic-mrwapp

3

https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers
https://github.com/NOAA-EPIC/ufs-containers
docker://noaaepic/ubuntu20.04-gnu9.3
docker://noaaepic/ubuntu20.04-hpc-stack
docker://noaaepic/ubuntu20.04-epic-srwapp
docker://noaaepic/ubuntu20.04-epic-mrwapp

HPC-Stack Users Guide

2.1.1 Install Singularity

To install the HPC-Stack via Singularity container, first install the Singularity package according
to the Singularity Installation Guide. This will include the installation of dependencies and the
installation of the Go programming language. SingularityCE Version 3.7 or above is recommended.

Warning: Docker containers can only be run with root privileges, and users cannot have
root privileges on HPC’s. Therefore, it is not possible to build the HPC-Stack inside a Docker
container on an HPC system. A Docker image may be pulled, but it must be run inside a
container such as Singularity. Docker can, however, be used to build the HPC-Stack on a local
system.

2.1.2 Build and Run the Container

1. Pull and build the container.

singularity pull ubuntu20.04-gnu9.3.sif docker://noaaepic/ubuntu20.04-gnu9.3
singularity build --sandbox ubuntu20.04-gnu9.3 ubuntu20.04-gnu9.3.sif
cd ubuntu20.04-gnu9.3

Make a directory (e.g., contrib) in the container if one does not exist:

mkdir contrib
cd ..

2. From the local working directory, start the container and run an interactive shell within it.
This command also binds the local working directory to the container so that data can be
shared between them.

singularity shell -e --writable --bind /<local_dir>:/contrib ubuntu20.04-gnu9.3

Make sure to update <local_dir> with the name of your local working directory.

2.1.3 Build the HPC-Stack

1. Clone the HPC-Stack repository (from inside the Singularity shell initialized above).

git clone https://github.com/NOAA-EMC/hpc-stack
cd hpc-stack

2. Set up the build environment. Be sure to change the prefix argument in the code below to
your system’s install location (likely within the hpc-stack directory).

./setup_modules.sh -p <prefix> -c config/config_custom.sh

4 Chapter 2. Install and Build the HPC-Stack

https://sylabs.io/guides/3.2/user-guide/installation.html

HPC-Stack Users Guide

Here, <prefix> is the directory where the software packages will be installed with a default
value of $HOME/opt. For example, if the HPC-Stack is installed in the user’s directory, the
prefix might be /home/$USER/hpc-stack/hpc-modules.

Enter YES/YES/YES when the option is presented. Then modify build_stack.sh with the
following commands:

sed -i "10 a source /usr/share/lmod/6.6/init/bash" ./build_stack.sh
sed -i "10 a export PATH=/usr/local/sbin:/usr/local/bin:$PATH" ./build_stack.sh
sed -i "10 a export LD_LIBRARY_PATH=/usr/local/lib64:/usr/local/lib:$LD_LIBRARY_
→˓PATH" ./build_stack.sh

3. Build the environment. This may take several hours to complete.

./build_stack.sh -p <prefix> -c config/config_custom.sh -y stack/stack_custom.
→˓yaml -m

4. Load the required modules, making sure to change the <prefix> to the location of the module
files.

source /usr/share/lmod/lmod/init/bash
module use <prefix>/hpc-modules/modulefiles/stack
module load hpc hpc-gnu hpc-openmpi
module avail

From here, the user can continue to install and run applications that depend on the HPC-Stack,
such as the UFS Short Range Weather (SRW) Application.

2.2 Non-Container HPC-Stack Installation and Build (General/Linux)

2.2.1 Install Prerequisites

To install the HPC-Stack locally, the following pre-requisites must be installed:

• Python 3: Can be obtained either from the main distributor or from Anaconda.

• Compilers: Distributions of Fortran, C, and C++ compilers that work for your system.

• Message Passing Interface (MPI) libraries for multi-processor and multi-core communica-
tions, configured to work with your corresponding Fortran, C, and C++ compilers.

• Programs and software packages: Lmod, CMake, make, wget, curl, git, and the TIFF library.

Note: For detailed instructions on how to build the HPC-Stack on two particular configurations of
MacOS, see Chapter 3

To determine whether these prerequisites are installed, query the environment variables (for Lmod)
or the location and version of the packages (for cmake, make, wget, curl, git). For example:

2.2. Non-Container HPC-Stack Installation and Build (General/Linux) 5

https://www.python.org/
https://www.anaconda.com/
https://lmod.readthedocs.io/en/latest/030_installing.html
https://cmake.org/install/
https://www.gnu.org/software/make/
https://www.gnu.org/software/wget/
https://curl.se/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://gitlab.com/libtiff/libtiff.git

HPC-Stack Users Guide

echo $LMOD_PKG
which cmake
cmake --version

Methods for determining whether libtiff is installed vary between systems. Users can try the
following approaches:

whereis libtiff
locate libtiff
ldconfig -p | grep libtiff
ls /usr/lib64/libtiff*
ls /usr/lib/libtiff*

If compilers or MPI’s need to be installed, consult the HPC-Stack Prerequisites document for further
guidance.

2.2.2 Configure the Build

Choose the COMPILER, MPI, and PYTHON version, and specify any other aspects of the build
that you would like. For Level 1 systems, a default configuration can be found in the applicable
config/config_<platform>.sh file. For Level 2-4 systems, selections can be made by editing the
config/config_custom.sh file to reflect the appropriate compiler, MPI, and Python choices for your
system. If Lmod is installed on your system, you can view package options using the module avail
command.

Some of the parameter settings available are:

• HPC_COMPILER: This defines the vendor and version of the compiler you wish to use for this
build. The format is the same as what you would typically use in a module load command.
For example, HPC_COMPILER=intel/2020. Use gcc -v to determine your compiler and version.

• HPC_MPI: This is the MPI library you wish to use. The format is the same as for
HPC_COMPILER. For example: HPC_MPI=impi/2020.

• HPC_PYTHON: This is the Python interpreter to use for the build. The format is the same
as for HPC_COMPILER, for example: HPC_PYTHON=python/3.7.5. Use python --version to
determine the current version of Python.

Other variables include USE_SUDO, DOWNLOAD_ONLY, NOTE, PKGDIR, LOGDIR, OVERWRITE,
NTHREADS, MAKE_CHECK, MAKE_VERBOSE, and VENVTYPE. For more information on their use,
see HPC-Stack Parameters.

Note: If you only want to install select components of the HPC-Stack, you can edit the stack/
stack_custom.yaml file to omit unwanted components. The stack/stack_custom.yaml file lists
the software packages to be built along with their version, options, compiler flags, and any other
package-specific options. A full listing of components is available in the HPC-Stack Components
section.

6 Chapter 2. Install and Build the HPC-Stack

https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers

HPC-Stack Users Guide

2.2.3 Set Up Compiler, MPI, Python & Module System

Note: This step is required if you are using Lmod modules for managing the software stack. Lmod
is installed across all Level 1 and Level 2 systems and in the containers provided. If LMod is not
desired or used, the user can skip ahead to Step 2.2.4.

After preparing the system configuration in ./config/config_<platform>.sh, run the following
command from the top directory:

./setup_modules.sh -p <prefix> -c <configuration>

where:

<prefix> is the directory where the software packages will be installed during the HPC-Stack
build. The default value is $HOME/opt. The software installation trees will branch directly off
of <prefix>, while the module files will be located in the <prefix>/modulefiles subdirectory.

Attention: Note that <prefix> requires an absolute path; it will not work with a relative path.

<configuration> points to the configuration script that you wish to use, as described in Step 2.2.2.
The default configuration file is config/config_custom.sh.

Additional Options:

The compiler and MPI modules can be handled separately from the rest of the build in order to
exploit site-specific installations that maximize performance. In this case, the compiler and MPI
modules are preceded by an hpc- label. For example, to load the Intel compiler module and the
Intel MPI (IMPI) software library, enter:

module load hpc-intel/2020
module load hpc-impi/2020

These hpc- modules are really meta-modules that load the compiler/MPI library and modify the
MODULEPATH so that the user has access to the software packages that will be built in Step 2.2.4.
On HPC systems, these meta-modules load the native modules provided by the system administra-
tors.

In short, you may prefer not to load the compiler or MPI modules directly. Instead, loading the hpc-
meta-modules as demonstrated above will provide everything needed to load software libraries.

It may be necessary to set certain source and path variables in the build_stack.sh script. For
example:

source /usr/share/lmod/6.6/init/bash
source /usr/share/lmod/lmod/init/bash
export PATH=/usr/local/sbin:/usr/local/bin:$PATH

(continues on next page)

2.2. Non-Container HPC-Stack Installation and Build (General/Linux) 7

HPC-Stack Users Guide

(continued from previous page)

export LD_LIBRARY_PATH=/usr/local/lib64:/usr/local/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH

It may also be necessary to initialize Lmod when using a user-specific Lmod installation:

module purge
export BASH_ENV=$HOME/<Lmod-installation-dir>/lmod/lmod/init/bash
source $BASH_ENV
export LMOD_SYSTEM_DEFAULT_MODULES=<module1>:<module2>:<module3>
module --initial_load --no_redirect restore
module use <$HOME>/<your-modulefiles-dir>

where:

• <Lmod-installation-dir> is the top directory where Lmod is installed

• <module1>, ...,<moduleN> is a comma-separated list of modules to load by default

• <$HOME>/<your-modulefiles-dir> is the directory where additional custom modules may be
built with Lmod (e.g., $HOME/modulefiles).

2.2.4 Build the HPC-Stack

Now all that remains is to build the stack:

./build_stack.sh -p <prefix> -c <configuration> -y <yaml_file> -m

Here the -m option is only required when you need to build your own modules and LMod is used
for managing the software stack. It should be omitted otherwise. <prefix> and <configuration>
are the same as in Step 2.2.3, namely a reference to the absolute-path installation prefix and
a corresponding configuration file in the config directory. As in Step 2.2.3, if this argument is
omitted, the default is to use $HOME/opt and config/config_custom.sh respectively. <yaml_file>
represents a user configurable yaml file containing a list of packages that need to be built in the
stack along with their versions and package options. The default value of <yaml_file> is stack/
stack_custom.yaml.

Warning: Steps Step 2.2.2, Step 2.2.3, and Step 2.2.4 need to be repeated for each com-
piler/MPI combination that you wish to install. The new packages will be installed alongside
any previously-existing packages that may already have been built from other compiler/MPI
combinations.

From here, the user can continue to install and run applications that depend on the HPC-Stack.

8 Chapter 2. Install and Build the HPC-Stack

CHAPTER

THREE

INSTALL AND BUILD HPC-STACK ONMACOS

HPC-Stack can be installed and built on MacOS systems. The following two options have been
tested:

• Option 1: MacBookAir 2020, M1 chip (arm64, running natively), 4+4 cores, Big Sur 11.6.4,
GNU compiler suite v.11.2.0_3 (gcc, gfortran, g++); no MPI pre-installed

• Option 2: MacBook Pro 2015, 2.8 GHz Quad-Core Intel Core i7 (x86_64), Catalina OS X
10.15.7, GNU compiler suite v.11.2.0_3 (gcc, gfortran, g++); no MPI pre-installed

Note: Examples throughout this chapter presume that the user is running Terminal.app with a
bash shell environment. If this is not the case, users will need to adjust commands to fit their
command line application and shell environment.

3.1 Prerequisites for Building HPC-Stack

3.1.1 Install Homebrew and Xcode Command-Line Tools (CLT)

Open Terminal.app and a web browser. Go to https://brew.sh, copy the command-line installation
directive, and run it in a new Terminal window. Terminal will request a sudo access password. The
installation command will look similar to the following:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/
→˓install.sh)"

This will install Homebrew, Xcode CLT, and Ruby.

An alternative way to install the Xcode command-line tools (CLT) is as follows:

xcode-select --install

9

https://brew.sh

HPC-Stack Users Guide

3.1.2 Install Compilers

Install GNU compiler suite (version 11) and gfortran:

brew install gcc@11

Create symbolic links from the version-specific binaries to gcc and g++. A sudo password may
be requested. The path will likely be /opt/homebrew/bin/gcc-11 (Option 1), or /usr/local/bin/
gcc-11 (Option 2).

which gcc-11
cd /usr/local/bin/ (OR cd /opt/homebrew/bin/)
ln -s gcc-11 gcc
ln -s g++-11 g++

There is no need to create a link for gfortran if this is the first installation of this compiler. If an
earlier version of gfortran exists, you may rename it (e.g., to “gfortran-old”) and create a link to
the new installation:

ln -s gfortran-11 gfortran

Verify the paths for the compiler binaries:

which gcc
which g++
which gfortran

Verify that they show the correct version of GNU installed:

gcc --version
g++ --version
gfortran --version

10 Chapter 3. Install and Build HPC-Stack on MacOS

HPC-Stack Users Guide

3.1.3 Install CMake

Install the cmake utility via homebrew:

brew install cmake

3.1.4 Install/Upgrade Make

To install the make utility via homebrew:

brew install make

To upgrade the make utility via homebrew:

brew upgrade make

3.1.5 Install Openssl@3

To install the openssl@3 package, run:

brew install openssl@3

Note the messages at the end of the installation. Depending on what they say, users may need to
add the location of the openssl@3 binaries to the environment variable $PATH. To add it to the PATH,
run:

echo 'export PATH="/opt/homebrew/opt/openssl@3/bin:$PATH"' >> ~/.bashrc

Users may also need to set certain flags so that the compilers can find the openssl@3 package:

export LDFLAGS="-L/opt/homebrew/opt/openssl@3/lib"
export CPPFLAGS="-I/opt/homebrew/opt/openssl@3/include"

3.1.6 Install Lmod

Install Lmod, which is the module management environment, run:

brew install lmod

You may need to add the Lmod environment initialization to your shell profile, e.g., to $HOME/.
bashrc.

For the Option 1 installation, add:

export BASH_ENV="/opt/homebrew/opt/lmod/init/bash"
source $BASH_ENV

3.1. Prerequisites for Building HPC-Stack 11

HPC-Stack Users Guide

For the Option 2 installation, add:

export BASH_ENV="/usr/local/opt/lmod/init/bash"
source $BASH_ENV

3.1.7 Install libpng

The libpng library has issues when building on MacOS during the HPC-Stack bundle build. There-
fore, it must be installed separately. To install the libpng library, run:

brew install libpng

3.1.8 Install wget

Install the Wget software package:

brew install wget

3.1.9 Install or Update Python3

First, verify that Python3 is installed, and check the current version:

which python3
python3 --version

The first command should return /usr/bin/python3 and the second should return Python 3.8.2 or
similar (the exact version is unimportant).

If necessary, download an updated version of Python3 for MacOS from https://www.python.org/
downloads. The version 3.9.11 64-bit universal2 installer package is recommended (i.e., python-3.
9.11-macos11.pkg). Double-click on the installer package, and accept the license terms. An admin-
istrative level password will be requested for the installation. At the end of the installation, run
Install Certificates.command by double-clicking on the shell script in Finder.app that opens and
runs it.

Start a new bash session (type bash in the existing terminal), and verify the installed version:

python3 --version

The output should now correspond to the Python version you installed.

12 Chapter 3. Install and Build HPC-Stack on MacOS

https://www.python.org/downloads
https://www.python.org/downloads

HPC-Stack Users Guide

3.1.10 Install Git

Install git and dependencies:

brew install git

3.2 Building HPC-Stack

3.2.1 Clone HPC-Stack

Download HPC-Stack code from GitHub:

git clone https://github.com/NOAA-EMC/hpc-stack.git
cd hpc-stack

The configuration files are ./config/config_<machine>.sh. For Option 1, <machine> is mac_m1_gnu
and for Option 2, <machine> is mac_gnu.

The ./stack/stack_<machine>.yaml file lists the libraries that will be built as part of HPC-Stack, in
addition to library-specific options. These can be altered based on user preferences.

3.2.2 Lmod Environment

Verify the initialization of Lmod environment, or add it to the configuration file ./config/
config_<machine>.sh, as in Step 3.1.6.

For Option 1:

export BASH_ENV="/opt/homebrew/opt/lmod/init/profile"
source $BASH_ENV

For Option 2:

export BASH_ENV="/usr/local/opt/lmod/init/profile"
source $BASH_ENV

3.2.3 Specify Compiler, Python, and MPI

Specify the combination of compilers, python libraries, and MPI libraries in the configuration file
./config/config_<machine>.sh.

export HPC_COMPILER="gnu/11.2.0_3"
export HPC_MPI="openmpi/4.1.2" (Option 1 only)
export HPC_MPI="mpich/3.3.2" (Option 2 only)
export HPC_PYTHON="python/3.10.2"

3.2. Building HPC-Stack 13

github.com

HPC-Stack Users Guide

Comment out any export statements not relevant to the system, and make sure that version num-
bers reflect the versions installed on the system (which may differ from the versions listed here).

3.2.4 Set Appropriate Flags

When using gfortran version 10 or higher, verify that the following flags are set in
config_<machine>.sh:

For Option 1:

export STACK_FFLAGS="-fallow-argument-mismatch -fallow-invalid-boz"

For Option 2:

export STACK_FFLAGS=“-fallow-argument-mismatch -fallow-invalid-boz”
export STACK_CXXFLAGS="-march=native"

3.2.5 Set Environment Variables

Set the environmental variables for compiler paths in ./config/config_<machine>.sh. The variable
GNU below refers to the directory where the compiler binaries are located. For example, with Option
1, GNU=/opt/homebrew/bin/gcc, and with Option 2: GNU=/usr/local/bin.

export GNU="path/to/compiler/binaries"
export CC=$GNU/gcc
export FC=$GNU/gfortran
export CXX=$GNU/g++
export SERIAL_CC=$GNU/gcc
export SERIAL_FC=$GNU/gfortran
export SERIAL_CXX=$GNU/g++

3.2.6 Specify MPI Libraries

Specify the MPI libraries to be built within the HPC-Stack in ./stack/stack_<machine>.yaml. The
openmpi/4.1.2 (Option 1) and mpich/3.3.2 (Option 2) have been built successfully.

Option 1:

mpi:
build: YES
flavor: openmpi
version: 4.1.2

Option 2:

14 Chapter 3. Install and Build HPC-Stack on MacOS

HPC-Stack Users Guide

mpi:
build: YES
flavor: mpich
version: 3.3.2

3.2.7 Libpng

Set build libpng library to NO in ./stack/stack_<machine>.yaml to avoid problems during the
HPC-Stack build. Leave the defaults for other libraries and versions in ./stack/stack_<machine>.
yaml.

libpng:
build: NO

3.2.8 Set Up the Modules and Environment

Set up the modules and environment:

./setup_modules.sh -c config/config_<machine>.sh -p $HPC_INSTALL_DIR | tee setup_
→˓modules.log

where <machine> is mac_m1_gnu (Option 1), or mac_gnu (Option 2), and $HPC_INSTALL_DIR is the
absolute path for the installation directory of the HPC-Stack. You will be asked to choose whether
or not to use “native” installations of Python, the compilers, and the MPI. “Native” means that they
are already installed on your system. Thus, you answer “YES” to python, “YES” to gnu compilers,
and “NO” for MPI/mpich.

3.2.9 Building HPC-Stack

Build the modules:

./build_stack.sh -c config/config_<machine>.sh -p $HPC_INSTALL_DIR -y stack/stack_
→˓<machine>.yaml -m 2>&1 | tee build_stack.log

Attention:

• The option -p requires an absolute path (full path) of the installation directory!

• The -m option is needed to build separate modules for each library package.

3.2. Building HPC-Stack 15

HPC-Stack Users Guide

16 Chapter 3. Install and Build HPC-Stack on MacOS

CHAPTER

FOUR

INSTALLATION OF THE HPC-STACK PREREQUISITES

A wide variety of compiler and MPI options are available. Certain combinations may play well
together, whereas others may not.

The following system, compiler, and MPI combinations have been tested successfully:

Table 4.1: Sample System, Compiler, and MPI Options
System Compilers MPI
SUSE Linux Enterprise
Server 12.4

Intel compilers 2020.0 (ifort,
icc, icps)

Intel MPI wrappers (mpif90,
mpicc, mpicxx)

Linux CentOS 7 Intel compilers 2020.0 (ifort,
icc, icps)

Intel MPI (mpiifort, mpiicc, mpi-
icpc)

Compilers and MPI libraries can be downloaded from the following websites:

Compilers:

• GNU/GCC (version 9.x)

• Intel

MPI’s

• OpenMPI

• MPICH

• IntelMPI

17

https://gcc.gnu.org/
https://intel.com/
https://www.open-mpi.org/
https://www.mpich.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html

HPC-Stack Users Guide

18 Chapter 4. Installation of the HPC-Stack Prerequisites

CHAPTER

FIVE

BUILD PARAMETERS

5.1 Compiler & MPI

HPC_COMPILER:
This defines the vendor and version of the compiler you wish to use for this build. The
format is the same as what you would typically use in a module load command. For example,
HPC_COMPILER=intel/2020. Options include:

• gnu/6.5.0

• gnu/9.2.0

• intel/18.0.5.274

• intel/19.0.5.281

• intel/2020

• intel/2020.2

• intel/2021.3.0

For information on setting compiler flags, see Section 7.1 Additional Notes.

HPC_MPI:
The MPI library you wish to use for this build. The format is the same as for HPC_COMPILER;
for example: HPC_MPI=impi/2020. Current MPI types accepted are openmpi, mpich, impi,
cray, and cray*. Options include:

• impi/2020

• impi/2018.4.274

• impi/2019.0.5

• impi/2020

• impi/2020.2

• impi/2021.3.0

• mvapich2/2.3

• openmpi/4.1.2

19

HPC-Stack Users Guide

Note: For example, when using Intel-based compilers and Intel’s implementation of the MPI
interface, the config/config_custom.sh should contain the following specifications:

export SERIAL_CC=icc
export SERIAL_FC=ifort
export SERIAL_CXX=icpc

export MPI_CC=mpiicc
export MPI_FC=mpiifort
export MPI_CXX=mpiicpc

This will set the C, Fortran, and C++ compilers and MPI’s.

Note: To verify that your chosen MPI build (e.g., mpiicc) is based on the corresponding serial
compiler (e.g., icc), use the -show option to query the MPI’s. For example,

mpiicc -show

will display output like this:

$ icc -I<LONG_INCLUDE_PATH_FOR_MPI> -L<ANOTHER_MPI_LIBRARY_PATH> -L<ANOTHER_MPI_
→˓PATH> -<libraries, liners, build options...> -X<something> --<enable/disable/
→˓with some options> -l<library> -l<another_library> -l<yet-another-library>

The message you need from this prompt is “icc”, which confirms that your mpiicc build is based
on icc. It may happen that if you query the “mpicc -show” on your system, it is based on “gcc” (or
something else).

5.2 Other Parameters

HPC_PYTHON:
The Python interpretor you wish to use for this build. The format is the same as for
HPC_COMPILER, for example: HPC_PYTHON=python/3.7.5.

USE_SUDO:
If the directory where the software packages will be installed ($PREFIX) requires root per-
mission to write to, such as /opt/modules, then this flag should be enabled. For example,
USE_SUDO=Y.

DOWNLOAD_ONLY:
The stack allows the option to download the source code for all the software without per-
forming the installation. This is especially useful for installing the stack on machines that
do not allow internet connectivity to websites hosting the software (e.g., GitHub). For more
information, see Section 7.4 Additional Notes.

20 Chapter 5. Build Parameters

HPC-Stack Users Guide

Note: To enable a boolean flag, use a single-digit Y or T. To disable, use N or F (case insensitive).

PKGDIR:
is the directory where tarred or zipped software files will be downloaded and compiled.
Unlike $PREFIX, this is a relative path based on the root path of the repository. Individual
software packages can be downloaded manually to this directory and untarred, but this is
not required. Build scripts will look for the directory pkg/<pkgName-pkgVersion> (e.g., pkg/
hdf5-1_10_3).

LOGDIR:
The directory where log files from the build will be written, relative to the root path of the
repository.

OVERWRITE:
If set to T, this flag will cause the build script to remove the current installation, if any exists,
and replace it with the new version of each software package in question. If this variable is
not set, the build will bypass software packages that are already installed.

NTHREADS:
The number of threads to use for parallel builds.

MAKE_CHECK:
Run make check after build.

MAKE_VERBOSE:
Print out extra information to the log files during the build.

VENVTYPE:
Set the type of python environment to build. Value depends on whether using pip or conda.
Set VENVTYPE=pyvenv when using pip and VENVTYPE=condaenv when using Miniconda for cre-
ating virtual environments. Default is pyvenv.

5.2. Other Parameters 21

HPC-Stack Users Guide

22 Chapter 5. Build Parameters

CHAPTER

SIX

HPC-STACK COMPONENTS

The HPC-Stack packages are built in Step 2.2.4 using the build_stack.sh script. The following
software can optionally be built with the scripts under libs.

• Compilers and MPI libraries

– GNU/GCC

– Intel

– OpenMPI

– MPICH

– hpc- Meta-modules for all the above as well as Intel and IMPI

• HPC Stack - Third Party Libraries

– CMake

– Udunits

– PNG

– JPEG

– Jasper

– SZip

– Zlib

– HDF5

– PNetCDF

– NetCDF

– ParallelIO

– nccmp

– nco

– CDO

– FFTW

23

https://gcc.gnu.org/
https://intel.com
https://www.open-mpi.org/
https://www.mpich.org/
https://cmake.org/
https://www.unidata.ucar.edu/software/udunits/
http://www.libpng.org/pub/png/
https://jpeg.org/
https://github.com/jasper-software/jasper
https://support.hdfgroup.org/doc_resource/SZIP/
http://www.zlib.net/
https://www.hdfgroup.org/solutions/hdf5/
https://parallel-netcdf.github.io/
https://www.unidata.ucar.edu/software/netcdf/
https://github.com/NCAR/ParallelIO
https://gitlab.com/remikz/nccmp
http://nco.sourceforge.net/
https://code.mpimet.mpg.de/projects/cdo
http://www.fftw.org/

HPC-Stack Users Guide

– GPTL

– Tau2

– Boost

– Eigen

– GSL-Lite

– JSON for C++

– JSON Schema Validator for C++

– pybind11

– MADIS

– SQLite

– PROJ

– GEOS

• UFS Dependencies

– ESMF

– FMS

• NCEP Libraries

– NCEPLIBS-bacio

– NCEPLIBS-sigio

– NCEPLIBS-sfcio

– NCEPLIBS-gfsio

– NCEPLIBS-w3nco

– NCEPLIBS-sp

– NCEPLIBS-ip

– NCEPLIBS-ip2

– NCEPLIBS-g2

– NCEPLIBS-g2c

– NCEPLIBS-g2tmpl

– NCEPLIBS-nemsio

– NCEPLIBS-nemsiogfs

– NCEPLIBS-w3emc

– NCEPLIBS-landsfcutil

– NCEPLIBS-bufr

24 Chapter 6. HPC-Stack Components

https://jmrosinski.github.io/GPTL/
https://beta.boost.org/
http://eigen.tuxfamily.org/
http://github.com/gsl-lite/gsl-lite
https://github.com/nlohmann/json/
https://github.com/pboettch/json-schema-validator
https://github.com/pybind/pybind11
https://madis-data.ncep.noaa.gov
https://www.sqlite.org
https://proj.org
https://www.osgeo.org/projects/geos
https://www.earthsystemcog.org/projects/esmf/
https://github.com/noaa-gfdl/fms.git
https://github.com/noaa-emc/nceplibs-bacio.git
https://github.com/noaa-emc/nceplibs-sigio.git
https://github.com/noaa-emc/nceplibs-sfcio.git
https://github.com/noaa-emc/nceplibs-gfsio.git
https://github.com/noaa-emc/nceplibs-w3nco.git
https://github.com/noaa-emc/nceplibs-sp.git
https://github.com/noaa-emc/nceplibs-ip.git
https://github.com/noaa-emc/nceplibs-ip2.git
https://github.com/noaa-emc/nceplibs-g2.git
https://github.com/noaa-emc/nceplibs-g2c.git
https://github.com/noaa-emc/nceplibs-g2tmpl.git
https://github.com/noaa-emc/nceplibs-nemsio.git
https://github.com/noaa-emc/nceplibs-nemsiogfs.git
https://github.com/noaa-emc/nceplibs-w3emc.git
https://github.com/noaa-emc/nceplibs-landsfcutil.git
https://github.com/noaa-emc/nceplibs-bufr.git

HPC-Stack Users Guide

– NCEPLIBS-wgrib2

– NCEPLIBS-prod_util

– NCEPLIBS-grib_util

– NCEPLIBS-ncio

– NCEPLIBS-wrf_io

– EMC_crtm

– UPP

• JEDI Dependencies

– ecbuild

– eckit

– fckit

– atlas

• Python and Virtual Environments

– Miniconda3

– r2d2

25

https://github.com/noaa-emc/nceplibs-wgrib2.git
https://github.com/noaa-emc/nceplibs-prod_util.git
https://github.com/noaa-emc/nceplibs-grib_util.git
https://github.com/noaa-emc/nceplibs-ncio.git
https://github.com/noaa-emc/nceplibs-wrf_io.git
https://github.com/noaa-emc/EMC_crtm.git
https://github.com/NOAA-EMC/UPP
https://github.com/ecmwf/ecbuild.git
https://github.com/ecmwf/eckit.git
https://github.com/ecmwf/fckit.git
https://github.com/ecmwf/atlas.git
https://docs.conda.io/en/latest/
https://github.com/jcsda-internal/r2d2.git

HPC-Stack Users Guide

26 Chapter 6. HPC-Stack Components

CHAPTER

SEVEN

HPC-STACK ADDITIONAL NOTES

7.1 Setting Compiler Flags and Other Options

Often it is necessary to specify compiler flags (e.g., gfortran-10 -fallow-argument-mismatch for
the packages via FFLAGS. There are 2 ways this can be achieved:

1. For all packages: One can define variable e.g., STACK_FFLAGS=-fallow-argument-mismatch
in the config file config_custom.sh. This will append STACK_FFLAGS to FFLAGS in every build
script under libs.

2. Package specific flags: To compile only the specific package under libs with the above
compiler flag, one can define variable FFLAGS=-fallow-argument-mismatch in the <package>
section of the YAML file stack_custom.yaml. This will append STACK_<package>_FFLAGS to
FFLAGS in the build script for that package only.

7.2 Adding a New Library or Package

If you want to add a new library to the stack you need to follow these steps:

1. Write a new build script in libs, using existing scripts as a template.

2. Define a new section in the yaml file for that library/package in config directory.

3. If the package is a python virtual environment, add a requirements.txt or environment.
yml file listing the python packages required to install the package. These files
should be named and placed in pyvenv/package_name.txt and pyvenv/package_name.yml.
VENVTYPE=pyvenv will use the pyvenv/package_name.txt and VENVTYPE=condaenv will use
pyvenv/package_name.yml.

4. Add a call to the new build script in build_stack.sh.

5. Create a new module template at the appropriate place in the modulefiles directory, using
exising files as a template.

6. Update the HPC Components file to include the name of the new library or package.

27

HPC-Stack Users Guide

7.3 Configuring for a new HPC

If you want to port this to a new HPC, you need to follow these steps:

1. Write a new config file config/config_<hpc>.sh, using existing config files as a template. Also
create a new yaml file config/stack_<hpc>.yaml, using existing yaml files as a template.

2. Add/remove basic modules for that HPC.

3. Choose the appropriate Compiler/MPI combination.

4. If a template modulefile does not exist for that Compiler/MPI combinattion, create module
templates at the appropriate place in the modulefiles directory, using existing files as a tem-
plate (e.g., hpc-ips or hpc-smpi).

5. If the new HPC system provides some basic modules for e.g., Git, CMake, etc., they can be
loaded in config/config_<hpc>.sh.

7.4 Using the DOWNLOAD_ONLY Option

If an HPC (e.g., NOAA RDHPCS Hera) does not allow access to online software via wget or
git clone, you will have to download all the packages using the DOWNLOAD_ONLY option in the
config_custom.sh. Execute build_stack.sh as you would on a machine that does allow access
to online software with DOWNLOAD_ONLY=YES and all the packages will be downloaded in the pkg
directory. Transfer the contents of the pkg directory to the machine where you wish to install
the HPC-Stack, and execute build_stack.sh. The build_stack.sh script will detect the already-
downloaded packages and use them rather than fetching them.

7.5 Using the HPC-Stack

• If Lmod is used to manage the software stack, you will need to activate the HPC-Stack in
order to use it. This is done by loading the hpc module under $PREFIX/modulefiles/stack as
follows:

module use $PREFIX/modulefiles/stack
module load hpc/1.0.0

This will put the hpc-<compilerName> module in your MODULEPATH, which can be loaded as:

module load hpc-<compilerName>/<compilerVersion>

• If the HPC-Stack is not managed via modules, you need to add $PREFIX to the PATH as follows:

export PATH="$PREFIX/bin:$PATH"
export LD_LIBRARY_PATH="$PREFIX/lib:$LD_LIBRARY_PATH"
export CMAKE_PREFIX_PATH="$PREFIX"

28 Chapter 7. HPC-Stack Additional Notes

HPC-Stack Users Guide

7.6 KnownWorkaround for Certain Installations of Lmod

• On some machines (e.g., WCOSS_DELL_P3), LMod is built to disable loading of default mod-
ulefiles and requires the user to load the module with an explicit version of the module (e.g.,
module load netcdf/4.7.4 instead of module load netcdf). The latter looks for the default
module which is either the latest version or a version that is marked as default. To circumvent
this, it is necessary to place the following lines in modulefiles/stack/hpc/hpc.lua prior to
executing setup_modules.sh or in $PREFIX/modulefiles/stack/hpc/1.0.0.lua after execut-
ing setup_modules.sh.

setenv("LMOD_EXACT_MATCH", "no")
setenv("LMOD_EXTENDED_DEFAULT", "yes")

See more on the Lmod website.

7.7 Known Issues

• NetCDF-C++ does not build with LLVM Clang. It can be disabled by setting disable_cxx:
YES in the stack file under the NetCDF section.

• Json-schema-validator does not build with LLVM Clang. It can be disabled in the stack file in
the json-schema-validator-section.

7.6. KnownWorkaround for Certain Installations of Lmod 29

https://lmod.readthedocs.io/en/latest/090_configuring_lmod.html

	Introduction
	Background
	Instructions
	Disclaimer

	Install and Build the HPC-Stack
	Install and Build the HPC-Stack in a Singularity Container
	Install Singularity
	Build and Run the Container
	Build the HPC-Stack

	Non-Container HPC-Stack Installation and Build (General/Linux)
	Install Prerequisites
	Configure the Build
	Set Up Compiler, MPI, Python & Module System
	Build the HPC-Stack

	Install and Build HPC-Stack on MacOS
	Prerequisites for Building HPC-Stack
	Install Homebrew and Xcode Command-Line Tools (CLT)
	Install Compilers
	Install CMake
	Install/Upgrade Make
	Install Openssl@3
	Install Lmod
	Install libpng
	Install wget
	Install or Update Python3
	Install Git

	Building HPC-Stack
	Clone HPC-Stack
	Lmod Environment
	Specify Compiler, Python, and MPI
	Set Appropriate Flags
	Set Environment Variables
	Specify MPI Libraries
	Libpng
	Set Up the Modules and Environment
	Building HPC-Stack

	Installation of the HPC-Stack Prerequisites
	Build Parameters
	Compiler & MPI
	Other Parameters

	HPC-Stack Components
	HPC-Stack Additional Notes
	Setting Compiler Flags and Other Options
	Adding a New Library or Package
	Configuring for a new HPC
	Using the DOWNLOAD_ONLY Option
	Using the HPC-Stack
	Known Workaround for Certain Installations of Lmod
	Known Issues

